Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 20 de 68
Filter
1.
CEUR Workshop Proceedings ; 3380, 2022.
Article in English | Scopus | ID: covidwho-20238595

ABSTRACT

The detection of temporal abnormal patterns over streaming data is challenging due to volatile data properties and lacking real-time labels. The abnormal patterns are usually hidden in the temporal context, which can not be detected by evaluating single points. Furthermore, the normal state evolves over time due to concept drift. A single model does not fit all data over time. Autoencoders are recently applied for unsupervised anomaly detection. However, they usually get expired and invalid after distributional drifts in the data stream. In this paper, we propose an autoencoder-based approach (STAD) for anomaly detection under concept drift. In particular, we use a state-transition-based model to map different data distributions in each period of the data stream into states, thereby addressing the model adaptation problem in an interpretable way. We empirically demonstrate the state transition process and evaluate the anomaly detection performance on the Covid-19 dataset of Germany. © 2022 Copyright for this paper by its authors. Use permitted under Creative Commons License Attribution 4.0 International (CC BY 4.0). CEUR Workshop Proceedings (CEUR-WS.org)

2.
Int J Comput Assist Radiol Surg ; 2023 May 29.
Article in English | MEDLINE | ID: covidwho-20236779

ABSTRACT

BACKGROUND: Current artificial intelligence studies for supporting CT screening tasks depend on either supervised learning or detecting anomalies. However, the former involves a heavy annotation workload owing to requiring many slice-wise annotations (ground truth labels); the latter is promising, but while it reduces the annotation workload, it often suffers from lower performance. This study presents a novel weakly supervised anomaly detection (WSAD) algorithm trained based on scan-wise normal and anomalous annotations to provide better performance than conventional methods while reducing annotation workload. METHODS: Based on surveillance video anomaly detection methodology, feature vectors representing each CT slice were trained on an AR-Net-based convolutional network using a dynamic multiple-instance learning loss and a center loss function. The following two publicly available CT datasets were retrospectively analyzed: the RSNA brain hemorrhage dataset (normal scans: 12,862; scans with intracranial hematoma: 8882) and COVID-CT set (normal scans: 282; scans with COVID-19: 95). RESULTS: Anomaly scores of each slice were successfully predicted despite inaccessibility to any slice-wise annotations. Slice-level area under the curve (AUC), sensitivity, specificity, and accuracy from the brain CT dataset were 0.89, 0.85, 0.78, and 0.79, respectively. The proposed method reduced the number of annotations in the brain dataset by 97.1% compared to an ordinary slice-level supervised learning method. CONCLUSION: This study demonstrated a significant annotation reduction in identifying anomalous CT slices compared to a supervised learning approach. The effectiveness of the proposed WSAD algorithm was verified through higher AUC than existing anomaly detection techniques.

3.
Journal of Manufacturing Technology Management ; 34(4):507-534, 2023.
Article in English | ProQuest Central | ID: covidwho-2313321

ABSTRACT

PurposeThis work aims at proposing a novel Internet of Things (IoT)-based and cloud-assisted monitoring architecture for smart manufacturing systems able to evaluate their overall status and detect eventual anomalies occurring into the production. A novel artificial intelligence (AI) based technique, able to identify the specific anomalous event and the related risk classification for possible intervention, is hence proposed.Design/methodology/approachThe proposed solution is a five-layer scalable and modular platform in Industry 5.0 perspective, where the crucial layer is the Cloud Cyber one. This embeds a novel anomaly detection solution, designed by leveraging control charts, autoencoders (AE) long short-term memory (LSTM) and Fuzzy Inference System (FIS). The proper combination of these methods allows, not only detecting the products defects, but also recognizing their causalities.FindingsThe proposed architecture, experimentally validated on a manufacturing system involved into the production of a solar thermal high-vacuum flat panel, provides to human operators information about anomalous events, where they occur, and crucial information about their risk levels.Practical implicationsThanks to the abnormal risk panel;human operators and business managers are able, not only of remotely visualizing the real-time status of each production parameter, but also to properly face with the eventual anomalous events, only when necessary. This is especially relevant in an emergency situation, such as the COVID-19 pandemic.Originality/valueThe monitoring platform is one of the first attempts in leading modern manufacturing systems toward the Industry 5.0 concept. Indeed, it combines human strengths, IoT technology on machines, cloud-based solutions with AI and zero detect manufacturing strategies in a unified framework so to detect causalities in complex dynamic systems by enabling the possibility of products' waste avoidance.

4.
Journal of the Korean Society for Industrial and Applied Mathematics ; 26(4):280-295, 2022.
Article in English | Web of Science | ID: covidwho-2309144

ABSTRACT

This paper contains an introduction to industrial problems, solutions, and results conducted with the Korea Association of Machinery Industry. The client company commis-sioned the problem of upgrading the method of identifying global supply risky items. Accord-ingly, the factors affecting the supply and demand of imported items in the global supply chain were identified and the method of selecting risky items was studied and delivered. Through research and discussions with the client companies, it is confirmed that the most suitable fac-tors for identifying global supply risky items are 'import size', 'import dependence', and 'trend abnormality'. The meaning of each indicator is introduced, and risky items are selected us-ing export/import data until October 2022. Through this paper, it is expected that countries and companies will be able to identify global supply risky items in advance and prepare for risks in the new normal situation: the economic situation caused by infectious diseases such as the COVID-19 pandemic;and the export/import regulation due to geopolitical problems. The client company will include in his report, the method presented in this paper and the risky items selected by the method.

5.
Acm Journal of Data and Information Quality ; 15(1), 2023.
Article in English | Web of Science | ID: covidwho-2310881

ABSTRACT

Much of today's data are represented as graphs, ranging from social networks to bibliographic citations. Nodes in such graphs correspond to records that generally represent entities, while edges represent relationships between these entities. Both nodes and edges in a graph can have attributes that characterize the entities and their relationships. Relationships are either explicitly known ( like friends in a social network), or they are inferred using link prediction (such as two babies are siblings because they have the same mother). Any graph representing real-world data likely contains nodes and edges that are abnormal, and identifying these can be important for outlier detection in applications ranging from crime and fraud detection to viral marketing. We propose a novel approach to the unsupervised detection of abnormal nodes and edges in graphs. We first characterize nodes and edges using a set of features, and then employ a one-class classifier to identify abnormal nodes and edges. We extract patterns of features from these abnormal nodes and edges, and apply clustering to identify groups of patterns with similar characteristics. We finally visualize these abnormal patterns to show co-occurrences of features and relationships between those features that mostly influence the abnormality of nodes and edges. We evaluate our approach on datasets from diverse domains, including historical birth certificates, COVID patient records, e-mails, books, and movies. This evaluation demonstrates that our approach is well suited to identify both abnormal nodes and edges in graphs in an unsupervised way, and it can outperform several baseline anomaly detection techniques.

6.
3rd International Conference on Robotics, Electrical and Signal Processing Techniques, ICREST 2023 ; 2023-January:269-274, 2023.
Article in English | Scopus | ID: covidwho-2301053

ABSTRACT

This study shows a prototype for detecting lung effects using microwave imaging. Continuous monitoring of pulmonary fluid levels is one of the most successful approaches for detecting fluid in the lung;early Chest X-rays, computational tomography (CT)-scans, and magnetic resonance imaging (MRI) are the most commonly used instruments for fluid detection. Nonetheless, they lack sensitivity to ionizing radiation and are inaccessible to the general public. This research focuses on the development of a low-cost, portable, and noninvasive device for detecting Covid-19 or lung damage. The simulation of the system involved the antenna design, a 3D model of the human lung, the building of a COMSOL model, and image processing to estimate the lung damage percentage. The simulation consisted of three components. The primary element requires mode switching for four array antennas (transmit and receive). In the paper, microwave tomography was used. Using microwave near-field imaging, the second component of the simulation analyses the lung's bioheat and electromagnetic waves as well as examines the image creation under various conditions;many electromagnetic factors seen at the receiving device are investigated. The final phase of the simulation shows the affected area of the lung phantom and the extent of the damage. © 2023 IEEE.

7.
AI Soc ; : 1-30, 2023 Apr 15.
Article in English | MEDLINE | ID: covidwho-2290632

ABSTRACT

The COVID-19 pandemic has triggered panic-buying behavior around the globe. As a result, many essential supplies were consistently out-of-stock at common point-of-sale locations. Even though most retailers were aware of this problem, they were caught off guard and are still lacking the technical capabilities to address this issue. The primary objective of this paper is to develop a framework that can systematically alleviate this issue by leveraging AI models and techniques. We exploit both internal and external data sources and show that using external data enhances the predictability and interpretability of our model. Our data-driven framework can help retailers detect demand anomalies as they occur, allowing them to react strategically. We collaborate with a large retailer and apply our models to three categories of products using a dataset with more than 15 million observations. We first show that our proposed anomaly detection model can successfully detect anomalies related to panic buying. We then present a prescriptive analytics simulation tool that can help retailers improve essential product distribution in uncertain times. Using data from the March 2020 panic-buying wave, we show that our prescriptive tool can help retailers increase access to essential products by 56.74%.

8.
Artif Life Robot ; 28(2): 381-387, 2023.
Article in English | MEDLINE | ID: covidwho-2296282

ABSTRACT

With the spread of COVID-19, the need for remote detection of physical conditions is increasing, for example, there are several situations wherein the body temperature has to be measured remotely to detect febrile individuals. Aiming to remotely detect physical conditions, the study attempted to investigate anomaly detection based on facial color and skin temperature, which are indicators related to hemodynamics. Triplet loss was used to extract features related to subjective health feelings from facial images to evaluate whether there is a relationship between subjective health feelings and facial images. A classification of subjective health feelings related to poor physical conditions based on these features was also attempted. To obtain the data, an experiment was conducted for approximately 1 year to measure facial visual and thermal images, and subjective feelings related to physical conditions. Anomaly levels were defined based on subjective health feelings. Anomaly detection models were constructed by classifying anomaly and normal data based on subjective health feelings. Facial visible and thermal images were applied to the trained model to quantitatively evaluate the accuracy of the classification of anomaly conditions related to subjective health. At higher levels of anomaly, a combination of facial visible and thermal images resulted in the classification of subjective health feelings with moderate accuracy. Further, the results suggest that the eyes and sides of the nose may indicate subjective health feelings.

9.
Diagnostics (Basel) ; 13(8)2023 Apr 18.
Article in English | MEDLINE | ID: covidwho-2296206

ABSTRACT

This study introduces a new method for identifying COVID-19 infections using blood test data as part of an anomaly detection problem by combining the kernel principal component analysis (KPCA) and one-class support vector machine (OCSVM). This approach aims to differentiate healthy individuals from those infected with COVID-19 using blood test samples. The KPCA model is used to identify nonlinear patterns in the data, and the OCSVM is used to detect abnormal features. This approach is semi-supervised as it uses unlabeled data during training and only requires data from healthy cases. The method's performance was tested using two sets of blood test samples from hospitals in Brazil and Italy. Compared to other semi-supervised models, such as KPCA-based isolation forest (iForest), local outlier factor (LOF), elliptical envelope (EE) schemes, independent component analysis (ICA), and PCA-based OCSVM, the proposed KPCA-OSVM approach achieved enhanced discrimination performance for detecting potential COVID-19 infections. For the two COVID-19 blood test datasets that were considered, the proposed approach attained an AUC (area under the receiver operating characteristic curve) of 0.99, indicating a high accuracy level in distinguishing between positive and negative samples based on the test results. The study suggests that this approach is a promising solution for detecting COVID-19 infections without labeled data.

10.
21st International Conference on Artificial Intelligence and Soft Computing, ICAISC 2022 ; 13588 LNAI:182-192, 2023.
Article in English | Scopus | ID: covidwho-2266331

ABSTRACT

The COVID-19 pandemic has affected almost every aspect of life. The patterns of interpersonal contacts, the ways of doing business and the methods of school education have changed. A significant part of worldwide business has migrated to the virtual world, and the global supply chains have been disrupted. On the other hand, this new situation created opportunities for a much faster development of some areas of business and science. For example, the observation and analysis of pandemic data has contributed to the development of new techniques for effective mathematical forecasting. It is worth noting that during a pandemic most political and economic decisions are based on official data on the number of new infections at the country level. Therefore, the quality of this data is very important for making difficult decisions, such as implementing new restrictions. In this study, we will focus on the problem of pandemic data quality and present a novel anomaly detection method based on information granules. In numerical experiments, data from several European countries were compared. The selection of data for analysis was based on the following information: the movement of people between countries, similar quality of medical care and the sanitary standards. An appropriate adaptation of the author's anomaly detection method based on information granules allowed to identify potential anomalies in daily COVID reports. © 2023, The Author(s), under exclusive license to Springer Nature Switzerland AG.

11.
Intelligent Automation and Soft Computing ; 36(3):3405-3423, 2023.
Article in English | Scopus | ID: covidwho-2255844

ABSTRACT

The massive increase in the volume of data generated by individuals on social media microblog platforms such as Twitter and Reddit every day offers researchers unique opportunities to analyze financial markets from new perspec-tives. The meme stock mania of 2021 brought together stock traders and investors that were also active on social media. This mania was in good part driven by retail investors' discussions on investment strategies that occurred on social media platforms such as Reddit during the COVID-19 lockdowns. The stock trades by these retail investors were then executed using services like Robinhood. In this paper, machine learning models are used to try and predict the stock price movements of two meme stocks: GameStop ($GME) and AMC Entertainment ($AMC). Two sentiment metrics of the daily social media discussions about these stocks on Red-dit are generated and used together with 85 other fundamental and technical indicators as the feature set for the machine learning models. It is demonstrated that through the use of a carefully chosen mix of a meme stock's fundamental indica-tors, technical indicators, and social media sentiment scores, it is possible to predict the stocks' next-day closing prices. Also, using an anomaly detection model, and the daily Reddit discussions about a meme stock, it was possible to identify potential market manipulators. © 2023, Tech Science Press. All rights reserved.

12.
22nd IEEE International Conference on Data Mining Workshops, ICDMW 2022 ; 2022-November:1168-1175, 2022.
Article in English | Scopus | ID: covidwho-2253940

ABSTRACT

Online Social Networks (OSN s) are an integral part of modern life for sharing thoughts, stories, and news. An ecosystem of influencers generates a flood of content in the form of posts, some of which have an unusually high level of engagement with the influencer's fan base. These posts relate to blossoming topics of discussion that generate particular interest among users: The COVID-19 pandemic is a prominent example. Studying these phenomena provides an understanding of the OSN landscape and requires appropriate methods. This paper presents a methodology to discover notable posts and group them according to their related topic. By combining anomaly detection, graph modelling and community detection techniques, we pinpoint salient events automatically, with the ability to tune the amount of them. We showcase our approach using a large Instagram dataset and extract some notable weekly topics that gained momentum from 1.4 million posts. We then illustrate some use cases ranging from the COVID-19 outbreak to sporting events. © 2022 IEEE.

13.
European Transport Research Review ; 15(1), 2023.
Article in English | Scopus | ID: covidwho-2287688

ABSTRACT

Background: Cycling has always been considered a sustainable and healthy mode of transport. With the increasing concerns of greenhouse gases and pollution, policy makers are intended to support cycling as commuter mode of transport. Moreover, during Covid-19 period, cycling was further appreciated by citizens as an individual opportunity of mobility. Unfortunately, bicyclist safety has become a challenge with growing number of bicyclists in the 21st century. When compared to the traditional road safety network screening, availability of suitable data for bicycle based crashes is more difficult. In such framework, new technologies based smart cities may require new opportunities of data collection and analysis. Methods: This research presents bicycle data requirements and treatment to get suitable information by using GPS device. Mainly, this paper proposed a deep learning-based approach "BeST-DAD” to detect anomalies and spot dangerous points on map for bicyclist to avoid a critical safety event (CSE). BeST-DAD follows Convolutional Neural Network and Autoencoder (AE) for anomaly detection. Proposed model optimization is carried out by testing different data features and BeST-DAD parameter settings, while another comparison performance is carried out between BeST-DAD and Principal Component Analysis (PCA). Result: BeST-DAD over perform than traditional PCA statistical approaches for anomaly detection by achieving 77% of the F-score. When the trained model is tested with data from different users, 100% recall is recorded for individual user's trained models. Conclusion: The research results support the notion that proper GPS trajectory data and deep learning classification can be applied to identify anomalies in cycling behavior. © 2023, The Author(s).

14.
Journal of Data and Information Quality ; 15(1), 2022.
Article in English | Scopus | ID: covidwho-2280499

ABSTRACT

Much of today's data are represented as graphs, ranging from social networks to bibliographic citations. Nodes in such graphs correspond to records that generally represent entities, while edges represent relationships between these entities. Both nodes and edges in a graph can have attributes that characterize the entities and their relationships. Relationships are either explicitly known (like friends in a social network), or they are inferred using link prediction (such as two babies are siblings because they have the same mother). Any graph representing real-world data likely contains nodes and edges that are abnormal, and identifying these can be important for outlier detection in applications ranging from crime and fraud detection to viral marketing. We propose a novel approach to the unsupervised detection of abnormal nodes and edges in graphs. We first characterize nodes and edges using a set of features, and then employ a one-class classifier to identify abnormal nodes and edges. We extract patterns of features from these abnormal nodes and edges, and apply clustering to identify groups of patterns with similar characteristics. We finally visualize these abnormal patterns to show co-occurrences of features and relationships between those features that mostly influence the abnormality of nodes and edges. We evaluate our approach on datasets from diverse domains, including historical birth certificates, COVID patient records, e-mails, books, and movies. This evaluation demonstrates that our approach is well suited to identify both abnormal nodes and edges in graphs in an unsupervised way, and it can outperform several baseline anomaly detection techniques. © 2022 Copyright held by the owner/author(s).

15.
Front Public Health ; 11: 1079315, 2023.
Article in English | MEDLINE | ID: covidwho-2284458

ABSTRACT

Introduction: The worldwide COVID-19 pandemic, which began in December 2019 and has lasted for almost 3 years now, has undergone many changes and has changed public perceptions and attitudes. Various systems for predicting the progression of the pandemic have been developed to help assess the risk of COVID-19 spreading. In a case study in Japan, we attempt to determine whether the trend of emotions toward COVID-19 expressed on social media, specifically Twitter, can be used to enhance COVID-19 case prediction system performance. Methods: We use emoji as a proxy to shallowly capture the trend in emotion expression on Twitter. Two aspects of emoji are studied: the surface trend in emoji usage by using the tweet count and the structural interaction of emoji by using an anomalous score. Results: Our experimental results show that utilizing emoji improved system performance in the majority of evaluations.


Subject(s)
COVID-19 , Social Media , Humans , COVID-19/epidemiology , Pandemics , Japan , Emotions
16.
Eng Appl Artif Intell ; 122: 106130, 2023 Jun.
Article in English | MEDLINE | ID: covidwho-2247906

ABSTRACT

The world is slowly recovering from the Coronavirus disease 2019 (COVID-19) pandemic; however, humanity has experienced one of its According to work by Mishra et al. (2020), the study's first phase included a cohort of 5,262 subjects, with 3,325 Fitbit users constituting the majority. However, among this large cohort of 5,262 subjects, most significant trials in modern times only to learn about its lack of preparedness in the face of a highly contagious pathogen. To better prepare the world for any new mutation of the same pathogen or the newer ones, technological development in the healthcare system is a must. Hence, in this work, PCovNet+, a deep learning framework, was proposed for smartwatches and fitness trackers to monitor the user's Resting Heart Rate (RHR) for the infection-induced anomaly. A convolutional neural network (CNN)-based variational autoencoder (VAE) architecture was used as the primary model along with a long short-term memory (LSTM) network to create latent space embeddings for the VAE. Moreover, the framework employed pre-training using normal data from healthy subjects to circumvent the data shortage problem in the personalized models. This framework was validated on a dataset of 68 COVID-19-infected subjects, resulting in anomalous RHR detection with precision, recall, F-beta, and F-1 score of 0.993, 0.534, 0.9849, and 0.6932, respectively, which is a significant improvement compared to the literature. Furthermore, the PCovNet+ framework successfully detected COVID-19 infection for 74% of the subjects (47% presymptomatic and 27% post-symptomatic detection). The results prove the usability of such a system as a secondary diagnostic tool enabling continuous health monitoring and contact tracing.

17.
Computers, Materials and Continua ; 74(2):3333-3350, 2023.
Article in English | Scopus | ID: covidwho-2238528

ABSTRACT

COVID-19 is the common name of the disease caused by the novel coronavirus (2019-nCoV) that appeared in Wuhan, China in 2019. Discovering the infected people is the most important factor in the fight against the disease. The gold-standard test to diagnose COVID-19 is polymerase chain reaction (PCR), but it takes 5–6 h and, in the early stages of infection, may produce false-negative results. Examining Computed Tomography (CT) images to diagnose patients infected with COVID-19 has become an urgent necessity. In this study, we propose a residual attention deep support vector data description SVDD (RADSVDD) approach to diagnose COVID-19. It is a novel approach combining residual attention with deep support vector data description (DSVDD) to classify the CT images. To the best of our knowledge, we are the first to combine residual attention with DSVDD in general, and specifically in the diagnosis of COVID-19. Combining attention with DSVDD naively may cause model collapse. Attention in the proposed RADSVDD guides the network during training and enables quick learning, residual connectivity prevents vanishing gradients. Our approach consists of three models, each model is devoted to recognizing one certain disease and classifying other diseases as anomalies. These models learn in an end-to-end fashion. The proposed approach attained high performance in classifying CT images into intact, COVID-19, and non-COVID-19 pneumonia. To evaluate the proposed approach, we created a dataset from published datasets and had it assessed by an experienced radiologist. The proposed approach achieved high performance, with the normal model attained sensitivity (0.96–0.98), specificity (0.97–0.99), F1-score (0.97–0.98), and area under the receiver operator curve (AUC) 0.99;the COVID-19 model attained sensitivity (0.97–0.98), specificity (0.97–0.99), F1-score (0.97–0.99), and AUC 0.99;and the non-COVID pneumonia model attained sensitivity (0.97–1), specificity (0.98–0.99), F1-score (0.97–0.99), and AUC 0.99. © 2023 Tech Science Press. All rights reserved.

18.
19th International Conference on Electrical Engineering, Computing Science and Automatic Control, CCE 2022 ; 2022.
Article in English | Scopus | ID: covidwho-2213165

ABSTRACT

The COVID-19 outbreak is a major global catastrophe of our time and the largest hurdle since World War II. According to WHO, as of July 2022, there are more than 571 million confirmed cases of COVID-19 and over six million deaths. The issue of identifying unexpected inputs based on trained examples of normal data is known as anomaly detection. In the case of diagnosing covid-19, Chest X-ray disorders that are hardly apparent are extremely challenging to identify. Although various well-known supervised classification methods are being applied for that purpose, however in the real scenario, healthy patients' data is tremendously available but contaminated samples are scarce. The process of gathering samples from ill patients is troublesome and takes a lengthy time. To address the issue of data imbalance in anomaly detection, this research demonstrates an unsupervised learning technique using a convolutional autoencoder in which the training phase does not include any infected sample. Being trained only with the healthy data, The patterns of the healthy samples are preserved in latent vector space and can differentiate ill samples by observing substantial divergence from the distribution of healthy data. Higher reconstruction error and lower KDE (Kernel Density Estimation) indicate affected data. By contrasting the reconstruction error and KDE of healthy data with anomalous data, the suggested technique is feasible for identifying anomalous samples. © 2022 IEEE.

19.
J Cloud Comput (Heidelb) ; 12(1): 10, 2023.
Article in English | MEDLINE | ID: covidwho-2196451

ABSTRACT

Supporting security and data privacy in cloud workflows has attracted significant research attention. For example, private patients' data managed by a workflow deployed on the cloud need to be protected, and communication of such data across multiple stakeholders should also be secured. In general, security threats in cloud environments have been studied extensively. Such threats include data breaches, data loss, denial of service, service rejection, and malicious insiders generated from issues such as multi-tenancy, loss of control over data and trust. Supporting the security of a cloud workflow deployed and executed over a dynamic environment, across different platforms, involving different stakeholders, and dynamic data is a difficult task and is the sole responsibility of cloud providers. Therefore, in this paper, we propose an architecture and a formal model for security enforcement in cloud workflow orchestration. The proposed architecture emphasizes monitoring cloud resources, workflow tasks, and the data to detect and predict anomalies in cloud workflow orchestration using a multi-modal approach that combines deep learning, one class classification, and clustering. It also features an adaptation scheme to cope with anomalies and mitigate their effect on the workflow cloud performance. Our prediction model captures unsupervised static and dynamic features as well as reduces the data dimensionality, which leads to better characterization of various cloud workflow tasks, and thus provides better prediction of potential attacks. We conduct a set of experiments to evaluate the proposed anomaly detection, prediction, and adaptation schemes using a real COVID-19 dataset of patient health records. The results of the training and prediction experiments show high anomaly prediction accuracy in terms of precision, recall, and F1 scores. Other experimental results maintained a high execution performance of the cloud workflow after applying adaptation strategy to respond to some detected anomalies. The experiments demonstrate how the proposed architecture prevents unnecessary wastage of resources due to anomaly detection and prediction.

20.
2022 IEEE Region 10 International Conference, TENCON 2022 ; 2022-November, 2022.
Article in English | Scopus | ID: covidwho-2192085

ABSTRACT

Amblyopia is a noteworthy disease in children leading to visual loss. This work focuses on creating a deep learning model for the detection of Amblyopia factors in patients wearing masks under the COVID-19 pandemic. © 2022 IEEE.

SELECTION OF CITATIONS
SEARCH DETAIL